

¹H AND ¹³C NMR SPECTRA OF 8-HYDROXYQUINOLINE

A. A. Fomichev, Yu. S. Ryabokobylko,
A. V. Kessenikh, A. Ataev, B. V. Parusnikov,
I. A. Krasavin, and V. M. Dziomko

UDC 543.422.25:547.831.7

The ¹H and ¹³C NMR spectra of 8-hydroxyquinoline were analyzed. The assignment of the signals was established unambiguously by ¹³C-{¹H} double-resonance experiments and investigation of the ¹³C NMR spectrum without decoupling from the protons.

A joint study of the ¹H and ¹³C NMR spectra of 8-hydroxyquinoline as compared with the spectrum of quinoline has made it possible to unambiguously establish the correct assignment of the signals in the proton spectrum and to eliminate the contradictions in the literature [1, 2]. The assignment of the signals in the ¹³C NMR spectrum (Table 1) was made by comparison with quinoline [3]. The changes in the shifts ($\Delta\delta$) induced by the hydroxyl group are close to those observed on passing from naphthalene to 1-naphthol [4]: +22.84 and +23.36 for a carbon atom bearing a substituent, -18.36 and -16.99 for ortho-C, +0.91 and +0.06 for meta-C, -10.23 and -7.08 for para-C, -10.74 and -9.12 for 9-C, and +0.11 and +1.26 for 10-C. In the spectrum without irradiation of the protons we observed spin-spin coupling of 5-C with 4-H in the peri position ($J \sim 4-5$ Hz), which is characteristic for two-ring aromatic systems [4, 5]. The assignment of the PMR spectrum (Table 2) was accomplished by the ¹³C-{¹H} double-resonance method proceeding from the established assignment of the ¹³C NMR spectrum. The analysis of the ABC spectrum of the protons of the phenol ring was made by means of Spin Simulation and ITRCAL programs with Varian 620-L and BNC-12 minicomputers. The incorrect assignment of signals from 5-H and 7-H in [1] requires reconsideration of the conclusions drawn in it regarding the different dependences of these signals on the solvent. In addition, as in the case of unsubstituted quinoline [6], in the correct assignment the J_{ortho} value in the phenol ring of 8-hydroxyquinoline is greater for α, β protons than for the β, β protons ($J_{5,6} > J_{6,7}$).

TABLE 1. ¹³C Chemical Shifts in the Spectra of Quinoline and 8-Hydroxyquinoline (in ppm) with Tetramethylsilane as the Internal Standard

C atom	Quinoline [3]	8-Hydroxy-quinoline	$\Delta\delta = \delta_{\text{8-hydro}} - \delta_{\text{X}}$
C-2	150.89	148.23	-2.66
C-3	121.67	121.55	-0.12
C-4	136.12	136.33	+0.21
C-5	128.46	118.23	-10.23
C-6	126.95	127.86	+0.91
C-7	129.86	111.50	-18.36
C-8	130.50	153.34	+22.84
C-9	149.28	138.54	-10.74
C-10	128.89	129.00	+0.11

TABLE 2. Chemical Shifts and Spin-Spin Coupling Constants of the Protons of 8-Hydroxyquinoline

Solvent	δ , ppm						J , Hz					
	H-2	H-3	H-4	H-5	H-6	H-7	2-3	2-4	3-4	5-6	5-7	6-7
CCl ₄	8.70	7.31	8.03	7.13	7.30	7.01	4.2	1.6	8.3	8.2	1.4	7.7
(CD ₃) ₂ SO	8.84	7.53	8.31	7.39	7.43	7.09	4.0	1.6	8.4	8.3	1.0	7.8

Institute of Reagents and Ultrapure Substances, Moscow 107258. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1235-1236, September, 1977. Original article submitted October 11, 1976.

LITERATURE CITED

1. S. Katayama, Y. Akahori, and H. Mori, *Chem. Pharm. Bull.*, **21**, 2622 (1973).
2. A. Corsini, W. L. Louch, and M. Thompson, *Talanta*, **21**, 252 (1974).
3. R. J. Pugmire, D. M. Grant, M. J. Robins, and R. K. Robins, *J. Am. Chem. Soc.*, **91**, 6381 (1969).
4. L. Ernst, *Chem. Ber.*, **108**, 2030 (1975).
5. P. Granger and M. Maugras, *J. Magn. Res.*, **22**, 405 (1976).
6. A. R. Katritzky and Y. Takeuchi, *J. Chem. Soc., Perkin Trans.*, **2**, 1682 (1972).

SPECTRAL LUMINESCENCE PROPERTIES OF 1- AND 2-ALKYL(CYCLOALKYL) DERIVATIVES OF BENZO[*f*]QUINOLINE

N. S. Kozlov, L. F. Gladchenko,
V. A. Serzhanina, G. V. Vorob'eva,
O. D. Zhikhareva, G. S. Shmanai,
and R. D. Sauts

UDC 547.832 : 543.426

The absorption and fluorescence spectra of alcohol solutions of 3-aryl-substituted benzo[*f*]-quinolines were investigated, and the fluorescence quantum yields were measured. It was established that the indicated compounds have intense absorption in the UV region and fluorescence at 350-450 nm. The fluorescence quantum yields range from 5 to 70%, depending on the substituents. The introduction of aromatic substituents in the 1 and 3 positions of benzo[*f*]quinoline ring raises the fluorescence quantum yields. A methyl group in the 2 position of the molecule leads to a decrease in the fluorescence quantum yield. Benzo[*f*]quinoline derivatives that contain a cyclopentene ring in the 1 and 2 positions fluoresce intensely ($\gamma = 40$ -60%), while cyclohexene and cycloheptene condensed in the same positions cause a decrease in the fluorescence yield to 7-13%; this is associated with the three-dimensional structure of these molecules.

It is known that most of the organic luminophores that are in use have heterocyclic systems. The use of aryl-substituted pyrazolines, oxazoles, imidazoles, and other compounds as optical bleaches, fluorescent pigments, and the active substances of lasers [1] has served as an impetus for numerous new studies of the optical properties of complex organic molecules.

Little study has been devoted to the spectral luminescence characteristics of benzo[*f*]quinoline and its derivatives. The literature contains information regarding the existence of fluorescence in solutions of benzo-

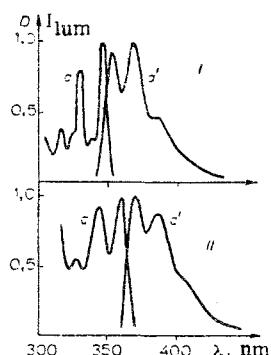


Fig. 1. Absorption (a) and fluorescence (a') spectra of alcohol solutions of benzo[*f*]quinoline (I) and 3-phenylbenzo[*f*]quinoline (II).

Institute of Physical Organic Chemistry, Academy of Sciences of the Belorussian SSR. Institute of Physics, Academy of Sciences of the Belorussian SSR, Minsk 220603. Translated from *Khimiya Geterotsiklicheskikh Soedinenii*, No. 9, pp. 1237-1240, September, 1977. Original article submitted January 18, 1977.